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Abstract
Using dipole and quadrupole operators as the orthogonal basis of su(3) algebra
and successive Cartan decompositions, the decomposition of matrices for two
coupled spin 1 systems is investigated so as to meet the requirements of some
realistic quantum systems. Finally, this kind of decomposition for the ternary
SWAP gate is given specifically. This method can be used to investigate the
realization of two-qutrit logic gates.

PACS numbers: 03.65.Fd, 03.67.Lx

1. Introduction

Recent studies have indicated that there are many advantages to expanding quantum computers
from double-valued systems (qubits) to multi-valued systems (qudits) [1–3]. There have also
been many proposals to use multi-valued systems in quantum cryptography [4, 5], quantum
teleportation [6] and quantum computation [1–3, 7–11]. Three-level quantum systems, so-
called qutrits, are the simplest multi-valued systems. Although much work has been done in
the proposals for the quantum information processes of multi-valued systems and the synthesis
of multi-valued quantum logic circuits, the work in implementation and optimization of multi-
valued quantum gates is relatively less.

Decomposition of the matrix plays a very important role in implementing and optimizing
quantum gates. The decomposition methods currently used are mainly Cartan decomposition
based on group theory [12], Cosine–Sine decomposition (CSD) [13] based on numerical linear
algebra, and the quantum Shannon decomposition (QSD) [14] proposed by Shende, Bullock
and Markov. The most widely used matrix decomposition in quantum information science
is a decomposition of the SU(2n) group for the n-qubit systems [15–18]. In [10] and [11],
the use of CSD, the realization of multi-qutrit and multi-qudit gates is discussed. A kind of
Cartan decomposition for the bipartite quantum system in high dimension is given in [19],
and the Cartan decomposition for two-qutrit systems is discussed in [20]. Based on this
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decomposition, the realization of the two-qutrit logic gate in a bipartite three-level system
with the quasi-Ising interaction is investigated and the realization of the ternary SWAP gate
and the ternary

√
SWAP gate is discussed specifically in [21].

Spin 1’s are a very common example of three-level systems. Examples are the nuclear
spins of naturally occurring isotopes 2H, 6Li, 14N and a long-life radioactive isotope 32P.
In addition, the spin-1 systems in condensate and other research areas have attracted much
attention [22–25], and any three-level system can also be considered as quasi-spin 1’s. The
interaction Hamiltonian to couple spin 1’s can be constructed by the dipole and quadrupole
operators described below. The simplest one is the one parameter Ising interaction [26].
The Heisenberg interaction is an interaction that often appears in literature [27–30]. The
controllability of two spin 1’s coupled with that interaction has been discussed in [30]. It
may have a quadrupole interaction [24, 25, 31]. The implementation of unitary operations
in a one-qutrit system is discussed in [31], and the quadrupole degree of freedom plays an
important role for that. In fact, as we shall see, the quadratic term in the Hamiltonian is a
quadrupole term.

A two-qutrit logic gate can be resolved into four 1-qutrit quantum multiplexers and three
1-qutrit uniformly controlled rotations acting on the first qutrit [10]. But the realization of
these two basic components needs further study. The bases of the Cartan decomposition for
bipartite quantum systems in [19] are pure mathematical, and the bases in [20] are different
from those in [19], but they still cannot meet the requirements of some realistic systems.

In this paper, using dipole and quadrupole operators as the orthogonal basis of the su(3)

algebra, we carry out specific Cartan decompositions of matrices for two coupled spin 1
systems. This paper is organized as follows. In the second section, we recall the definition
of Cartan decomposition, and then we give the dipole-quadrupole bases of the u(3) algebra
in section 3. The dipole–quadrupole decomposition of two coupled spin 1’s is investigated
in section 4. The realization of the two-qutrit gate is discussed briefly and an example to
decompose the ternary SWAP gate is given in section 5. The conclusion is given in section 6.

2. Cartan decomposition of the Lie group

The Cartan decomposition of the Lie group depends on the decomposition of its Lie algebras.
Let g be a semisimple Lie algebra and there is a decomposition

g = l ⊕ p, (1)

where l and p satisfy the commutation relations

[l, l] ⊆ l, [l, p] ⊆ p, [p, p] ⊆ l; (2)

we said that the decomposition is the Cartan decomposition of the Lie algebra g. The l is
closed under the Lie bracket, so it is a Lie subalgebra of g, and that p = l⊥. A maximal
Abelian subalgebra a contained in p is called a Cartan subalgebra, and the dimension of a is
called the rank of the decomposition. Then, utilizing the relation between the Lie group and
the Lie algebra, for every element X of the Lie group G can be written as

X = K1AK2, (3)

where G = eg , K1, K2 ∈ el and A ∈ ea . The coset space G/el is called a Riemannian
symmetric space of G.

The all Riemannian symmetric space of classical groups can be classified into several
types [12], and up to conjugacy, the corresponding decompositions fall into one of few types.
Same as [19, 20], we shall only use the decompositions of AI type for the SU(n) group (the
subgroup is isomorphism to the SO(n) group) and decompositions of BDI type for the SO(n)

group (the subgroup is isomorphism to SO(d1) ⊕ SO(d2), d1 + d2 = n).
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Table 1. The commutation relations between Q’s.

[ , ] U2 V1 V2 Q0

U1 2iLz −iLy −iLx 0
U2 iLx −iLy 0

V1 iLz −√
3iLy

V2

√
3iLx

Table 2. The commutation relations between L and Q.

[ , ] U1 U2 V1 V2 Q0

Lx −iV2 iV1 −iU2 i(U1 +
√

3Q0) −√
3iV2

Ly −iV1 −iV2 i(U1 − √
3Q0) iU2

√
3iV1

Lz 2iU2 −2iU1 iV2 −iV1 0

3. Dipole-quadrupole bases of the u(3) algebra

The matrices of a one-qutrit gate are elements of the SU(3) group. To meet the requirement
of spin 1’s particles with the specific interaction, we take dipole and quadrupole operators as
the orthogonal basis of the su(3) algebra. The matrices of three dipole operators are

Lx = 1√
2

⎛
⎝

0 1 0
1 0 1
0 1 0

⎞
⎠ , Ly = 1√

2

⎛
⎝

0 −i 0
i 0 −i
0 i 0

⎞
⎠ , Lz =

⎛
⎝

1 0 0
0 0 0
0 0 −1

⎞
⎠ . (4)

The five quadrupole operators are

U1 =
⎛
⎝

0 0 1
0 0 0
1 0 0

⎞
⎠ , U2 =

⎛
⎝

0 0 −i
0 0 0
i 0 0

⎞
⎠ , V1 = 1√

2

⎛
⎝

0 1 0
1 0 −1
0 −1 0

⎞
⎠ ,

V2 = 1√
2

⎛
⎝

0 −i 0
i 0 i
0 −i 0

⎞
⎠ , Q0 = 1√

3

⎛
⎝

1 0 0
0 −2 0
0 0 1

⎞
⎠ .

(5)

Multiplying these eight Hermitian matrices by i, we gain the basis vectors of the Lie algebra
su(3). The basis is similar to but different from that in [18]. Together with the 3 × 3 identity
matrix multiplied by i, they constitute the basis vectors of the Lie algebra u(3).

The dipole operators just are angular momentum operators and satisfy the commutation
relation

[Lα,Lβ ] = iLγ (α, β, γ → x, y, z). (6)

We denote the set of dipole operators by L and quadrupole operators by Q. The set
commutation relations between Q’s and between L and Q are given in tables 1 and 2
respectively.

Let

L± = Lx ± iLy, L0 = Lz, Q±1 = ∓ 1√
2
(V1 ± iV2), Q±2 = 1√

2
(U1 ± iU2); (7)

then, we get

[L±,Qq] =
√

2(2 + 1) − q(q ± 1)Qq±1, [L0,Qq] = qQq. (8)

So the operators are 2-rank tensor operators.
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Table 3. The anticommutation relations between L’s.

{ , } Lx Ly Lz

Lx
4
3 I −

√
3

3 Q0 + U1 U2 V1

Ly
4
3 I −

√
3

3 Q0 − U1 V2

Lz
4
3 I + 2

√
3

3 Q0

Table 4. The anticommutation relations between Q’s.

{ , } U1 U2 V1 V2 Q0

U1
4
3 I + 2

√
3

3 Q0 0 −V1 V2
2
√

3
3 U1

U2
4
3 I + 2

√
3

3 Q0 −V2 −V1
2
√

3
3 U2

V1
4
3 I −

√
3

3 Q0 − U1 −U2 −
√

3
3 V1

V2
4
3 I −

√
3

3 Q0 + U1 −
√

3
3 V2

Q0
4
3 I − 2

√
3

3 Q0

As we know, apart from magnetic moment, the spin-1 atomic nucleus has electric
quadrupole moment. The magnetic moment and electric quadrupole moment of deuteron
are 0.857μ

N
and 0.286 × 10−2b, respectively. The Hamiltonian of a quadrupolar nucleus

partially oriented in a liquid crystalline matrix, in the presence of a large magnetic field and
having a first-order quadrupolar coupling [32], can be written as

H1 = −ω0Iz + λ
(
3I 2

z − I 2
) = −ω0Iz +

√
3λQ0. (9)

The general quadrupolar interaction of two spin-1 nuclei can be written as

H2 = K0Q0 ⊗ Q0 − K1(Q1 ⊗ Q−1 + Q−1 ⊗ Q1) + K2(Q2 ⊗ Q−2 + Q−2 ⊗ Q2)

= K0Q0 ⊗ Q0 + K1(V1 ⊗ V1 + V2 ⊗ V2) + K2(U1 ⊗ U1 + U2 ⊗ U2). (10)

The Hamiltonian of the bilinear–biquadratic Heisenberg interaction can be written as

H3 = −K(Lx ⊗ Lx + Ly ⊗ Ly + Lz ⊗ Lz) + K′(Lx ⊗ Lx + Ly ⊗ Ly + Lz ⊗ Lz)
2

= −(
K + 1

2K
′)(Lx ⊗ Lx + Ly ⊗ Ly + Lz ⊗ Lz)

+ 1
2K

′ [Q0 ⊗ Q0 + (V1 ⊗ V1 + V2 ⊗ V2) + (U1 ⊗ U1 + U2 ⊗ U2) + 8
3I

]
. (11)

From the commutation relations, we can easily see that the iL’s span a subspace which
constitutes a subalgebra; the other six bases span the complement space of the subalgebra.
The subalgebra is isomorphism to so(3) so we get an AI-type Cartan decomposition of u(3).
The Cartan subalgebra of the decomposition is span{iQ0, iU1, iI3}. A transform matrix

T1 = 1√
2

⎛
⎝

−1 0 1
−i 0 −i

0
√

2 0

⎞
⎠ , (12)

can be used to transfer exp(iL) to the conventional SO(3) matrix by conjugation
transformation.

The anticommutation relations are summarized in tables 3–5.
We have

{L,L} = Q, {L,Q} = L, {Q,Q} = Q. (13)

4
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Table 5. The anticommutation relations between L and Q.

{, } U1 U2 V1 V2 Q0

Lx Lx Ly Lz 0 −
√

3
3 Lx

Ly −Ly Lx 0 Lz −
√

3
3 Ly

Lz 0 0 Lx Ly
2
√

3
3 Lz

4. Dipole–quadrupole decomposition of two coupled spin-1 systems

The matrices of the gate acting on two coupled spin-1 systems are elements of the U(9) group.
We denote the bases of the Lie algebra u(9) by the following expression:

F = i(F 1 ⊗ F 2), (F j (j = 1, 2) ∈ L,Q or I ). (14)

We carry out a decomposition of the Lie algebra u(9) as follows:

u(9) = l ⊕ p, (15)

l := span{iL ⊗ Q, iQ ⊗ L, iL ⊗ I, iI ⊗ L}, (16)

p := span{iL ⊗ L, iQ ⊗ Q, iQ ⊗ I, iI ⊗ Q, iI ⊗ I }. (17)

Using the commutation and the anticommutation relations in the former section and the
formula

[A ⊗ B,C ⊗ D] = 1
2 ({A,C} ⊗ [B,D] + [A,C] ⊗ {B,D}), (18)

it is easy to verify that the decomposition of u(9) is a Cartan decomposition. The subalgebra
l is isomorphic to so(9) and p is isomorphic to so(9)⊥, so the Cartan decomposition of the
system is of AI type whose rank is 9. The transform matrix T ′ = T1 ⊗ T1 can be used to
transfer el to the conventional SO(9) matrix. The Cartan subalgebra is given by

a := span{iQ0 ⊗ Q0, iQ0 ⊗ I, iI ⊗ Q0, iU1 ⊗ U1, iU1 ⊗ I,

iI ⊗ U1, iQ0 ⊗ U1, iU1 ⊗ Q0, iI ⊗ I }. (19)

Another equivalent Cartan subalgebra can be chosen as

ã := span{iLz ⊗ Lz, iQ0 ⊗ Q0, iQ0 ⊗ I, iI ⊗ Q0, iU1 ⊗ U1, iU2 ⊗ U2,

iU1 ⊗ (I −
√

3Q0), i(I −
√

3Q0) ⊗ U1, iI ⊗ I }. (20)

The Cartan subalgebra a contains the Q0Q0 interaction, and the ã contains the Ising term as
well as the Q0Q0 interaction.

The second step of the decomposition is the decomposition of the Lie subalgebra l, that is

l = l′ ⊕ p′, (21)

with

l′ := span{iLz ⊗ Q0, iLz ⊗ U, iQ0 ⊗ Lz, iU ⊗ Lz,

iLz ⊗ I, iI ⊗ Lz, iLx ⊗ V, iLy ⊗ V, iV ⊗ Lx, iV ⊗ Ly}, (22)

p′ := span{iLz ⊗ V, iV ⊗ Lz, iLx ⊗ Q0, iLx ⊗ U, iLy ⊗ Q0, iLy ⊗ U, iQ0 ⊗ Lx,

iU ⊗ Lx, iQ0 ⊗ Ly, iU ⊗ Ly, iLx ⊗ I, iLy ⊗ I, iI ⊗ Lx, iI ⊗ Ly}. (23)

5
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The l′ is conjugate to so(5) ⊕ so(4), and p′ is conjugate to (so(5) ⊕ so(4))⊥, so the Cartan
decomposition of the system is of BDI type whose rank is 4. Its Cartan subalgebra is given by

a′ := span{iLy ⊗ I, iI ⊗ Ly, iLy ⊗ (Q0 +
√

3U1), i(Q0 +
√

3U1) ⊗ Ly}. (24)

Likewise for K ∈ el′ , using the transformation matrices

R =

⎛
⎜⎜⎝

I4 0 0 0
0 0 0 1
0 I2 0 0
0 0 I2 0

⎞
⎟⎟⎠ , T = diag

⎧⎨
⎩I2,

⎛
⎝

0 1 0
0 0 1
1 0 0

⎞
⎠ , I4

⎫⎬
⎭ , (25)

and T ′ = T1 ⊗ T1, we can get K̃ = RT T ′KT ′†T T RT ∈ SO(5) ⊕ SO(4).
We further factorize the subalgebra l′ as

l′ = l′′ ⊕ p′′, (26)

l′′ := span{iLz ⊗ Q0, iLz ⊗ U, iQ0 ⊗ Lz, iU ⊗ Lz, iLz ⊗ I, iI ⊗ Lz}, (27)

p′′ := span{iLx ⊗ V, iLy ⊗ V, iV ⊗ Lx, iV ⊗ Ly}. (28)

The l′′ is conjugate to so(4) ⊕ so(1) ⊕ so(2) ⊕ so(2) and p′′ is conjugate to (so(4) ⊕ so(1) ⊕
so(2) ⊕ so(2))⊥. The Cartan subalgebra is given by

a′′ := span{iLx ⊗ V2, iV2 ⊗ Lx, i(Ly ⊗ V1 − V1 ⊗ Ly)}. (29)

The Lie algebra l′′ has two subalgebras which are expressed as

l′′1 := span{iLz ⊗ Q0, iLz ⊗ U, iQ0 ⊗ Lz, iU ⊗ Lz}, (30)

l′′2 := span{iLz ⊗ I, iI ⊗ Lz}, (31)

with l′′1 conjugate to the Lie algebra so(4) and l′′2 conjugate to the Lie algebra so(2) ⊕ so(2).

5. The realization of the two-qutrit gate

The key of implementing the quantum logic gate is to decompose the unitary matrix into the
product of realizable matrices. Based on the previous discussion, the decomposition of the
U(9) matrix for the two-qutrit gate is given by

X = K1A
′′
1K2A

′
1K3A

′′
2K4AK5A

′′
3K6A

′
2K7A

′′
4K8, (32)

where A, A′
j (j = 1, 2) and A′′

j (j = 1, 2, 3, 4) belong to the Abel groups associated with
Cartan subalgebras that appear in each decomposition step. Kj (j = 1, 2, . . . , 8) are conjugate
to the Lie group of SO(4) ⊕ SO(1) ⊕ SO(2) ⊕ SO(2). The SO(4) group is isomorphic
to SO(3) ⊕ SO(3), and the well-known Euler decomposition can be used to decompose the
SO(3) matrix. Hence the U(9) matrix for the two-qutrit gate can be factorized into the product
of single parameter subgroups. The Hamiltonian of the system can be written as

H = Hd +
∑

i

νi(t)Hi, (33)

where Hd is the part of Hamiltonian that is internal to the system and we call it the free evolution
or drift Hamiltonian and

∑
i νi(t)Hi is the part of Hamiltonian that can be externally changed

and we call it the control Hamiltonian. The equation (32) can be written in an exponential
form by the correspondence between the Lie group and Lie algebra, so as to make them easily

6
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relate to the free Hamiltonian and control field of the system. Each factor can be realized by
the control processes, or by the drift processes and some suitable transformations [21, 33].

In order to illustrate dipole–quadrupole decomposition of spin 1’s we have discussed
above, we take the ternary SWAP gate as an example as in [16]. The ternary SWAP gate is
defined as

Xsw : |i〉1 ⊗ |j 〉2 → |j 〉1 ⊗ |i〉2, (34)

where i, j = 0, 1, 2, and {|0〉, |1〉, |2〉}1,2 are orthonormal bases for the Hilbert space of the
subsystems. The matrix representation of this gate is given by

Xsw =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (35)

Here Xsw ∈ O(9) ⊂ U(9), and therefore the decomposition of U(9)/SO(9) can be simplified
to Xsw = X · A, where A is a diagonal matrix whose determinant is −1. Taking the
transformation X̃ = RT T ′XT ′†T T RT , we find that the X̃ belongs to the SO(5) ⊕ SO(4)

group; the second step of the decomposition can be omitted. The further decomposition can
be carried out as described above. The result is not unique, and one of the results is that

Xsw = L1L2L3L4A
′′A = el1el2el3el4ea′′

ea, (36)

where

l1 = −π

4
(iLz ⊗ U2), (37)

l2 = π(iI ⊗ Lz), (38)

l3 = π

2
i(Lz ⊗ U1 + U1 ⊗ Lz), (39)

l4 = π

4
(iU2 ⊗ Lz), (40)

a′′ = π

4
[i3Lx ⊗ V2 + iV2 ⊗ Lx − i(Ly ⊗ V1 − V1 ⊗ Ly)], (41)

a = π(iI ⊗ I + iLz ⊗ Lz), or a = π(iI ⊗ I − i3Q0 ⊗ Q0). (42)

From the suitable transformation, they can be transferred to the realizable matrices of the
system. If the system coupled with the Ising interaction and suitable control processes are
used, to implement the gate it needs 9 drift processes and 25 basic control processes [33].

6. Conclusion

Using the angular momentum operators and quadrupole moment operators as bases of su(3),
we investigate a decomposition of the matrix for two coupled spin-1 systems. By successive
Cartan decompositions, the unitary matrix can be decomposed into product of one-parameter
Lie subgroups. The method can be used to investigate the realization of two-qutrit logic gates.

7
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